论文标题

分层贝叶斯最近的邻居共同攻击高斯工艺模型;用于卫生间校准的应用

Hierarchical Bayesian Nearest Neighbor Co-Kriging Gaussian Process Models; An Application to Intersatellite Calibration

论文作者

Cheng, Si, Konomi, Bledar A., Matthews, Jessica L., Karagiannis, Georgios, Kang, Emily L.

论文摘要

遥感技术的最新进展和卫星星座尺寸不断增长,可以通过众多不同忠诚度的平台每天在全球范围内收集大量的地球物理信息。自动回归共同策略模型是分析此类数据集的合适框架,因为它说明了不同的保真度卫星输出之间的交叉依赖性。但是,其在多倍数大型空间数据集中实现实际上是不可行的,因为其计算复杂性随着观测值的总数而立方增加。在本文中,我们提出了一个最近的邻居共同进行高斯工艺,该过程通过使用增强想法来耦合自动回归模型和最近的邻居GP。与空间观察到的位置的总数降低计算复杂性为线性。最近的邻居GP的潜在过程以允许半轭先验的规范的方式增强。这有助于设计有效的MCMC采样器的设计,该采样器主要涉及可以在并行计算环境中实现的直接采样更新。在仿真研究中证明了所提出方法的良好预测性能。我们使用所提出的方法来分析从两个NOAA极性轨道卫星收集的高分辨率红外辐射音器数据。

Recent advancements in remote sensing technology and the increasing size of satellite constellations allows massive geophysical information to be gathered daily on a global scale by numerous platforms of different fidelity. The auto-regressive co-kriging model is a suitable framework to analyse such data sets because it accounts for cross-dependencies among different fidelity satellite outputs. However, its implementation in multifidelity large spatial data-sets is practically infeasible because its computational complexity increases cubically with the total number of observations. In this paper, we propose a nearest neighbour co-kriging Gaussian process that couples the auto-regressive model and nearest neighbour GP by using augmentation ideas; reducing the computational complexity to be linear with the total number of spatial observed locations. The latent process of the nearest neighbour GP is augmented in a manner which allows the specification of semi-conjugate priors. This facilitates the design of an efficient MCMC sampler involving mostly direct sampling updates which can be implemented in parallel computational environments. The good predictive performance of the proposed method is demonstrated in a simulation study. We use the proposed method to analyze High-resolution Infrared Radiation Sounder data gathered from two NOAA polar orbiting satellites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源