论文标题

预测劳动力市场的技能短缺:一种机器学习方法

Predicting Skill Shortages in Labor Markets: A Machine Learning Approach

论文作者

Dawson, Nik, Rizoiu, Marian-Andrei, Johnston, Benjamin, Williams, Mary-Anne

论文摘要

技能短缺是对社会的流失。他们妨碍了个人的经济机会,对公司的增长缓慢,并阻碍了劳动生产力的总体。因此,对于政策制定者和教育工作者来说,预测和预测技能短缺的能力至关重要。这项研究实现了一种高性能的机器学习方法,以预测职业技能短缺。此外,我们还展示了分析短缺职业的潜在技能需求的方法,以及预测技能短缺的最重要特征。在这项工作中,我们从2012年至2018年汇编了澳大利亚劳动力需求和劳动力供应职业数据的独特数据集。这包括来自770万个招聘广告(AD)和20项官方劳动力措施的数据。我们将这些数据用作解释变量,并利用XGBoost分类器来预测132个标准化职业的年度技能短缺分类。我们构建的模型可实现高达83%的宏F1平均性能得分。我们的研究结果表明,工作广告数据和就业统计数据是绩效最高的功能集,用于预测职业年度技能短缺变化。我们还发现,诸如“工作时间”,“教育”多年,“经验”和中位数“薪金”之类的功能是预测职业技能短缺的非常重要的特征。这项研究为预测​​和分析技能短缺提供了一种强大的数据驱动方法,可以帮助决策者,教育者和企业为未来的工作做准备。

Skill shortages are a drain on society. They hamper economic opportunities for individuals, slow growth for firms, and impede labor productivity in aggregate. Therefore, the ability to understand and predict skill shortages in advance is critical for policy-makers and educators to help alleviate their adverse effects. This research implements a high-performing Machine Learning approach to predict occupational skill shortages. In addition, we demonstrate methods to analyze the underlying skill demands of occupations in shortage and the most important features for predicting skill shortages. For this work, we compile a unique dataset of both Labor Demand and Labor Supply occupational data in Australia from 2012 to 2018. This includes data from 7.7 million job advertisements (ads) and 20 official labor force measures. We use these data as explanatory variables and leverage the XGBoost classifier to predict yearly skills shortage classifications for 132 standardized occupations. The models we construct achieve macro-F1 average performance scores of up to 83 per cent. Our results show that job ads data and employment statistics were the highest performing feature sets for predicting year-to-year skills shortage changes for occupations. We also find that features such as 'Hours Worked', years of 'Education', years of 'Experience', and median 'Salary' are highly important features for predicting occupational skill shortages. This research provides a robust data-driven approach for predicting and analyzing skill shortages, which can assist policy-makers, educators, and businesses to prepare for the future of work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源