论文标题
广义的逆高斯脆弱模型,具有针对靶向神经母细胞瘤数据的应用
Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data
论文作者
论文摘要
提出了一种基于广义逆陶斯(GIG)分布的新的生存脆弱模型。我们表明,像流行的伽玛脆弱型号一样,演出脆弱的型号具有灵活性和数学方便。此外,我们提议的班级很健壮,并且不提出伽马模型所经历的一些计算问题。通过假设分段指数基线危险函数,该函数为我们的脆弱类提供了半帕梅术的风味,我们提出了一个用于估计模型参数的EM-Algorithm,并为信息矩阵提供了明确的表达。解决了模拟结果以检查EM估计器的有限样本行为,并研究了在错误指定下的演出模型的性能。我们将方法应用于目标(治疗适用的研究以产生有效的治疗),以了解神经母细胞瘤癌症患者的生存时间,并显示出与文献中现有模型相对于现有模型的一些优势。
A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our proposed class is robust and does not present some computational issues experienced by the gamma model. By assuming a piecewise-exponential baseline hazard function, which gives a semiparametric flavour for our frailty class, we propose an EM-algorithm for estimating the model parameters and provide an explicit expression for the information matrix. Simulated results are addressed to check the finite sample behavior of the EM-estimators and also to study the performance of the GIG models under misspecification. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.