论文标题

从基础设施摄像头和雷达传感器中提取和评估自然主义人类驾驶轨迹

Extraction and Assessment of Naturalistic Human Driving Trajectories from Infrastructure Camera and Radar Sensors

论文作者

Notz, Dominik, Becker, Felix, Kühbeck, Thomas, Watzenig, Daniel

论文摘要

收集现实的驾驶轨迹对于模仿人类驾驶行为的训练机器学习模型至关重要。当今的大多数自动驾驶数据集中,每个位置仅包含少数轨迹,并通过训练有素的驾驶员谨慎驱动的测试车记录。特别是在诸如高速公路合并之类的互动场景中,测试驾驶员的行为显着影响其他车辆。这种影响阻止记录人类驾驶行为的整个交通空间。在这项工作中,我们提出了一种使用基础设施传感器提取交通对象的轨迹的新方法。基础架构传感器使我们能够为一个位置记录大量数据,并将测试驱动程序从循环中取出。我们既开发由相机和交通监视雷达组成的硬件设置,又是轨迹提取算法。我们的视觉管道准确地检测到对象,融合了相机和雷达检测并随着时间的推移跟踪它们。我们通过将图像坐标中的跟踪与道路坐标中的卡尔曼过滤器相结合,从而改善了最先进的对象跟踪器。我们表明,我们的传感器融合方法成功地结合了相机和雷达检测的优势,并且要优于单个传感器。最后,我们还评估了轨迹提取管道的准确性。为此,我们为测试工具配备了差异GPS传感器,并使用它来收集地面真相轨迹。使用此数据,我们计算测量误差。尽管我们使用平均误差来消除轨迹,但误差标准偏差处于地面真相数据不准确性的大小。因此,提取的轨迹不仅是自然主义的,而且是高度准确的,并且证明了使用基础设施传感器提取现实世界轨迹的潜力。

Collecting realistic driving trajectories is crucial for training machine learning models that imitate human driving behavior. Most of today's autonomous driving datasets contain only a few trajectories per location and are recorded with test vehicles that are cautiously driven by trained drivers. In particular in interactive scenarios such as highway merges, the test driver's behavior significantly influences other vehicles. This influence prevents recording the whole traffic space of human driving behavior. In this work, we present a novel methodology to extract trajectories of traffic objects using infrastructure sensors. Infrastructure sensors allow us to record a lot of data for one location and take the test drivers out of the loop. We develop both a hardware setup consisting of a camera and a traffic surveillance radar and a trajectory extraction algorithm. Our vision pipeline accurately detects objects, fuses camera and radar detections and tracks them over time. We improve a state-of-the-art object tracker by combining the tracking in image coordinates with a Kalman filter in road coordinates. We show that our sensor fusion approach successfully combines the advantages of camera and radar detections and outperforms either single sensor. Finally, we also evaluate the accuracy of our trajectory extraction pipeline. For that, we equip our test vehicle with a differential GPS sensor and use it to collect ground truth trajectories. With this data we compute the measurement errors. While we use the mean error to de-bias the trajectories, the error standard deviation is in the magnitude of the ground truth data inaccuracy. Hence, the extracted trajectories are not only naturalistic but also highly accurate and prove the potential of using infrastructure sensors to extract real-world trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源