论文标题

Bosphorussign22k手语识别数据集

BosphorusSign22k Sign Language Recognition Dataset

论文作者

Özdemir, Oğulcan, Kındıroğlu, Ahmet Alp, Camgöz, Necati Cihan, Akarun, Lale

论文摘要

手语识别是一个具有挑战性的研究领域。最近,随着数据可用性的增加,它最近看到了一些进步。在本文中,我们介绍了Bosphorussign22k,这是一个公开可用的大型手语数据集,旨在计算机视频,视频识别和深度学习研究社区。该数据集的主要目的是作为土耳其手语识别的新基准,以其广阔的词典,本地签名者的大量重复,高记录质量以及所包含标志的独特句法特性。我们还提供最先进的人姿势估计,以鼓励其他任务,例如手语的生产。我们调查了其他公开可用的数据集,并扩展了Bosphorussign22k如何通过广泛的类似手语资源的可用性来促进未来的研究。我们已经进行了广泛的实验,并目前的基线结果是基于数据集的未来研究。

Sign Language Recognition is a challenging research domain. It has recently seen several advancements with the increased availability of data. In this paper, we introduce the BosphorusSign22k, a publicly available large scale sign language dataset aimed at computer vision, video recognition and deep learning research communities. The primary objective of this dataset is to serve as a new benchmark in Turkish Sign Language Recognition for its vast lexicon, the high number of repetitions by native signers, high recording quality, and the unique syntactic properties of the signs it encompasses. We also provide state-of-the-art human pose estimates to encourage other tasks such as Sign Language Production. We survey other publicly available datasets and expand on how BosphorusSign22k can contribute to future research that is being made possible through the widespread availability of similar Sign Language resources. We have conducted extensive experiments and present baseline results to underpin future research on our dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源