论文标题

在神经网络的引擎盖下:通过功能性神经元人群和网络消融表征学习的表示形式

Under the Hood of Neural Networks: Characterizing Learned Representations by Functional Neuron Populations and Network Ablations

论文作者

Meyes, Richard, de Puiseau, Constantin Waubert, Posada-Moreno, Andres, Meisen, Tobias

论文摘要

人造神经网络中的决策过程需要更高的透明度,这取决于其在安全性和道德上具有挑战性领域(例如自动驾驶或医疗诊断)中的应用程序中的应用。我们解决了当今神经网络缺乏透明度,并阐明了单个神经元和一组神经元在履行一项学习任务的网络中的作用。受神经科学领域的研究的启发,我们通过激活模式和网络消融表征了学习的表示形式,揭示了功能性神经元种群,a)a)响应特定的刺激或b)在消融后对网络的性能产生了相似的影响。我们发现,神经元的激活的幅度或选择性都不是其对网络性能的影响,这是其对整个任务的重要性的足够独立指标。我们认为,这种指标对于转移学习和现代神经科学的未来进展至关重要。

The need for more transparency of the decision-making processes in artificial neural networks steadily increases driven by their applications in safety critical and ethically challenging domains such as autonomous driving or medical diagnostics. We address today's lack of transparency of neural networks and shed light on the roles of single neurons and groups of neurons within the network fulfilling a learned task. Inspired by research in the field of neuroscience, we characterize the learned representations by activation patterns and network ablations, revealing functional neuron populations that a) act jointly in response to specific stimuli or b) have similar impact on the network's performance after being ablated. We find that neither a neuron's magnitude or selectivity of activation, nor its impact on network performance are sufficient stand-alone indicators for its importance for the overall task. We argue that such indicators are essential for future advances in transfer learning and modern neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源