论文标题

R3:阅读理解基准需要推理过程

R3: A Reading Comprehension Benchmark Requiring Reasoning Processes

论文作者

Wang, Ran, Tao, Kun, Song, Dingjie, Zhang, Zhilong, Ma, Xiao, Su, Xi'ao, Dai, Xinyu

论文摘要

现有的问题回答系统只能在没有明确推理过程的情况下预测答案,这阻碍了它们的解释性,并使我们高估了他们的理解和推理能力,而不是自然语言。在这项工作中,我们提出了一项新的阅读理解任务,其中需要模型来提供最终的答案和推理过程。为此,我们介绍了一种形式主义,用于对非结构化文本进行推理,即文本推理含义表示表示(TRMR)。 TRMR由三个短语组成,该短语足以表征推理过程以回答阅读理解问题。我们开发了一个注释平台来促进TRMR的注释,并发布R3数据集,A \ TextBf {r} eDeading理解理解基准\ textbf {r}等待\ textbf {r} eSounting过程。 R3包含超过60k的问答对及其TRMR。我们的数据集可在:\ url {http://匿名}上获得。

Existing question answering systems can only predict answers without explicit reasoning processes, which hinder their explainability and make us overestimate their ability of understanding and reasoning over natural language. In this work, we propose a novel task of reading comprehension, in which a model is required to provide final answers and reasoning processes. To this end, we introduce a formalism for reasoning over unstructured text, namely Text Reasoning Meaning Representation (TRMR). TRMR consists of three phrases, which is expressive enough to characterize the reasoning process to answer reading comprehension questions. We develop an annotation platform to facilitate TRMR's annotation, and release the R3 dataset, a \textbf{R}eading comprehension benchmark \textbf{R}equiring \textbf{R}easoning processes. R3 contains over 60K pairs of question-answer pairs and their TRMRs. Our dataset is available at: \url{http://anonymous}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源