论文标题

消失的周期,平面曲线奇点和构图的映射班级组

Vanishing cycles, plane curve singularities, and framed mapping class groups

论文作者

Cuadrado, Pablo Portilla, Salter, Nick

论文摘要

让F成为一个孤立的平面曲线奇异性,至少5个。对于所有这些f,我们给出(a)对几何单肌组的固有描述,该组的固有描述不会引起Versal变形空间的概念,并且(B)简单的标准可以决定在Milnor纤维中给定的简单封闭曲线,是否是verner flaine over over over over over ander ander的周期。除了$ a_n $和$ d_n $的奇异性外,我们发现两者完全取决于与F相关的Hamiltonian Vector Field引起的Milnor纤维的规范构架。作为推论,我们回答了沙利文的一个问题,该问题是关于所有具有Milnor纤维至少7种的奇异性的单构群的注入性的问题。

Let f be an isolated plane curve singularity with Milnor fiber of genus at least 5. For all such f, we give (a) an intrinsic description of the geometric monodromy group that does not invoke the notion of the versal deformation space, and (b) an easy criterion to decide if a given simple closed curve in the Milnor fiber is a vanishing cycle or not. With the lone exception of singularities of type $A_n$ and $D_n$, we find that both are determined completely by a canonical framing of the Milnor fiber induced by the Hamiltonian vector field associated to f. As a corollary we answer a question of Sullivan concerning the injectivity of monodromy groups for all singularities having Milnor fiber of genus at least 7.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源