论文标题
在对称排除过程中,零电流的非平衡状态与二分法随机重置
Zero-current Nonequilibrium State in Symmetric Exclusion Process with Dichotomous Stochastic Resetting
论文作者
论文摘要
我们在存在随机重置为两种可能的特定配置的情况下研究对称排除过程(SEP)的动力学 - 速率$ r_1 $(分别为$ r_1 $($ r_2 $),该系统被重置为阶梯式配置,其中所有粒子在系统的左侧(分别为左侧)左侧(分别为左)。我们表明,这种二分的重置导致了一系列富裕行为,无论是动力学还是固定状态。我们在存在此二分法重置的情况下计算确切的固定轮廓,并表明扩散电流会及时线性增长,但是与单个配置的重置不同,在这种情况下,电流可能具有负平均值。对于$ r_1 = r_2,$平均电流消失,密度轮廓在固定状态下变平,类似于平衡。但是,该系统远离平衡,我们表征了此“零电流状态”的非平衡标志。我们表明,在此零气流状态下的空间密度相关性和时间密度相关性都与平衡SEP中的空间密度相关性截然不同。我们还研究了在外部扰动下这种零电流状态的行为,并证明其响应与平衡的响应截然不同,而sep平衡的响应则产生的电流会产生$ \ sqrt {t} $的电流,在不存在重置的情况下,在零流状态下,在二核均存在的情况下,$ s在同一$ sime $ sim com ers $ s上显示了当前的$ y。
We study the dynamics of symmetric exclusion process (SEP) in the presence of stochastic resetting to two possible specific configurations -- with rate $r_1$ (respectively, $r_2$) the system is reset to a step-like configuration where all the particles are clustered in the left (respectively, right) half of the system. We show that this dichotomous resetting leads to a range of rich behaviour, both dynamical and in the stationary state. We calculate the exact stationary profile in the presence of this dichotomous resetting and show that the diffusive current grows linearly in time, but unlike the resetting to a single configuration, the current can have negative average value in this case. For $r_1=r_2,$ the average current vanishes, and density profile becomes flat in the stationary state, similar to the equilibrium SEP. However, the system remains far from equilibrium and we characterize the nonequilibrium signatures of this `zero-current state'. We show that both the spatial and temporal density correlations in this zero-current state are radically different than in equilibrium SEP. We also study the behaviour of this zero-current state under an external perturbation and demonstrate that its response differs drastically from that of equilibrium SEP -- while a small driving field generates a current which grows as $\sqrt{t}$ in the absence of resetting, the zero-current state in the presence of dichotomous resetting shows a current $\sim t$ under the same perturbation.