论文标题

增强导航的性能:两阶段的机器学习方法

Enhance the performance of navigation: A two-stage machine learning approach

论文作者

Fan, Yimin, Wang, Zhiyuan, Lin, Yuanpeng, Tan, Haisheng

论文摘要

实时交通导航是智能运输技术的重要功能,这些年来已广泛研究。由于边缘设备的广泛开发,收集实时流量数据不再是问题。但是,由于交通流量和不可预测的事故/拥塞的时间变化,实际的交通导航仍然被认为是一个特别具有挑战性的问题。为了提供准确可靠的导航结果,以快速而准确的方式预测未来的交通流量(速度,拥堵,体积等)非常重要。在本文中,我们采用合奏学习的想法,并开发了两阶段的机器学习模型,以提供准确的导航结果。我们将交通流量建模为一个时间序列,并应用XGBoost算法,以获取对未来交通状况(第一阶段)的准确预测。然后,我们应用顶部的K Dijkstra算法,以作为输出最佳路径的候选者从给定点到目的地的起始点找到一组最短路径。通过在第一阶段的预测结果,我们找到了一个从候选者作为导航算法的输出的最佳路径。我们表明,我们的导航算法可以通过EOPF(增强的最佳路径查找)大大改进,该算法基于神经网络(第二阶段)。我们表明,在许多情况下,如果没有EOPF的方法,我们的方法可能比该方法高7%以上,这表明我们的模型有效性。

Real time traffic navigation is an important capability in smart transportation technologies, which has been extensively studied these years. Due to the vast development of edge devices, collecting real time traffic data is no longer a problem. However, real traffic navigation is still considered to be a particularly challenging problem because of the time-varying patterns of the traffic flow and unpredictable accidents/congestion. To give accurate and reliable navigation results, predicting the future traffic flow(speed,congestion,volume,etc) in a fast and accurate way is of great importance. In this paper, we adopt the ideas of ensemble learning and develop a two-stage machine learning model to give accurate navigation results. We model the traffic flow as a time series and apply XGBoost algorithm to get accurate predictions on future traffic conditions(1st stage). We then apply the Top K Dijkstra algorithm to find a set of shortest paths from the give start point to the destination as the candidates of the output optimal path. With the prediction results in the 1st stage, we find one optimal path from the candidates as the output of the navigation algorithm. We show that our navigation algorithm can be greatly improved via EOPF(Enhanced Optimal Path Finding), which is based on neural network(2nd stage). We show that our method can be over 7% better than the method without EOPF in many situations, which indicates the effectiveness of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源