论文标题

订购的设定分区,Garsia-Procesi模块和等级品种

Ordered set partitions, Garsia-Procesi modules, and rank varieties

论文作者

Griffin, Sean T.

论文摘要

我们介绍了一个理想的家族$ i_ {n,λ,s} $ in $ \ mathbb {q} [x_1,\ dots,x_n] $ for $λ$ a $ k \ leq n $和integer $ s \ s \ geq \ geq \ ell(λ)$的分区。这个家庭既包含Tanisaki Ideals $i_λ$又包含Haglund-Rhoades-Shimozono的理想$ i_ {n,k} $作为特殊情况。我们将相应的商戒指$ r_ {n,λ,s} $作为对称组模块。当$ n = k $和$ s $是任意的时,我们恢复了garsia-procesi模块,当$λ=(1^k)$和$ s = k $时,我们恢复了haglund-rhoades-rhoades-rhoades-rhoades-rhoades-rhoades-shimozono的广义共同代数。我们给出了$ r_ {n,λ,s} $的单一基础,统一了Garsia-procesi和Haglund-rhoades-shimozono研究的单一基础,并在$ r_ {n,λ,s} $的$(n,s)$(n,n,s)$(n,s)$(n,s)上的$ r_ {n,λ,s} $的$ s_n $ module结构实现。我们还证明了希尔伯特系列的公式,并将$ r_ {n,λ,s} $的Frobenius特征分级。然后,我们使用Weyman的结果将工作与Eisenbud-Saltman等级品种联系起来。作为我们工作的应用,我们给出了单一基础,希尔伯特系列公式,并为方案理论相交的坐标环与对角线矩阵的坐标环分级。

We introduce a family of ideals $I_{n,λ,s}$ in $\mathbb{Q}[x_1,\dots,x_n]$ for $λ$ a partition of $k\leq n$ and an integer $s \geq \ell(λ)$. This family contains both the Tanisaki ideals $I_λ$ and the ideals $I_{n,k}$ of Haglund-Rhoades-Shimozono as special cases. We study the corresponding quotient rings $R_{n,λ,s}$ as symmetric group modules. When $n=k$ and $s$ is arbitrary, we recover the Garsia-Procesi modules, and when $λ=(1^k)$ and $s=k$, we recover the generalized coinvariant algebras of Haglund-Rhoades-Shimozono. We give a monomial basis for $R_{n,λ,s}$, unifying the monomial bases studied by Garsia-Procesi and Haglund-Rhoades-Shimozono, and realize the $S_n$-module structure of $R_{n,λ,s}$ in terms of an action on $(n,λ,s)$-ordered set partitions. We also prove formulas for the Hilbert series and graded Frobenius characteristic of $R_{n,λ,s}$. We then connect our work with Eisenbud-Saltman rank varieties using results of Weyman. As an application of our work, we give a monomial basis, Hilbert series formula, and graded Frobenius characteristic formula for the coordinate ring of the scheme-theoretic intersection of a rank variety with diagonal matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源