论文标题
霍奇柴尔德共同学的杯子产品的Quiver代数家族
Cup product on Hochschild cohomology of a family of quiver algebras
论文作者
论文摘要
令K为Q,Q。我们在Quiver代数的家庭lambda_q的Hochschild共同学环上得出了一个杯子产品公式。使用此公式,我们确定了k [x,y]同构对Hochschild共同体学模量的子代数,其中n是由均质的nilpotent元素产生的理想。我们明确地构建了无法通过较低的同源度元素产生的非尼尔氏菌Cocycles,从而反驳了Snashall-Solberg有限产生的猜想。
Let k be a field, q in k. We derive a cup product formula on the Hochschild cohomology ring of a family Lambda_q of quiver algebras. Using this formula, we determine a subalgebra of k[x,y] isomorphic to Hochschild cohomology modulo N, where N is the ideal generated by homogeneous nilpotent elements. We explicitly construct non-nilpotent Hochschild cocycles which cannot be generated by lower homological degree elements, thus disproving the Snashall-Solberg finite generation conjecture.