论文标题

对会话推荐系统的调查

A Survey on Conversational Recommender Systems

论文作者

Jannach, Dietmar, Manzoor, Ahtsham, Cai, Wanling, Chen, Li

论文摘要

推荐系统是软件应用程序,可帮助用户在信息超载的情况下找到感兴趣的项目。当前的研究通常假定一个单次互动范式,其中用户的喜好是根据过去观察到的行为估算的,而排名的建议列表的呈现是用户交互的主要单向形式。会话推荐系统(CRS)采用不同的方法,并支持一组更丰富的交互。例如,这些交互可以帮助改善偏好启发过程,或者允许用户询问有关建议并提供反馈的问题。在过去的几年中,对CRS的兴趣大大增加。这种发展主要是由于自然语言处理领域的重大进展,新的语音控制家用助理的出现以及聊天机器人技术的使用越来越多。在本文中,我们对现有的会话建议方法进行了详细的调查。我们将这些方法在各个维度上分类,例如,根据支持的用户意图或它们在后台使用的知识。此外,我们讨论了技术方法,回顾如何评估CRS,并最终确定了许多值得将来需要更多研究的差距。

Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源