论文标题

无穷大的较高的Rho不变和离域ETA不变

Higher rho invariant and delocalized eta invariant at infinity

论文作者

Chen, Xiaoman, Liu, Hongzhi, Wang, Hang, Yu, Guoliang

论文摘要

在本文中,我们在完整的Riemannian歧管上介绍了几个新的次级不变性,供Dirac运算符,并在紧凑型组合外部具有均匀的正标度曲率度量,并使用这些次级不变式为DIRAC操作员建立较高的索引定理。我们应用理论来研究二级不变剂的歧管,每个边界面上都有带正标曲率度量的角。

In this paper, we introduce several new secondary invariants for Dirac operators on a complete Riemannian manifold with a uniform positive scalar curvature metric outside a compact set and use these secondary invariants to establish a higher index theorem for the Dirac operators. We apply our theory to study the secondary invariants for a manifold with corner with positive scalar curvature metric on each boundary face.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源