论文标题

同质进化方程与扰动的正规化效应

Regularizing effect of homogeneous evolution equations with perturbation

论文作者

Hauer, Daniel

论文摘要

由于Aronson&Bénilan的开创性作品[C. R. Acad。科学。巴黎Sér。,1979年]和Bénilan&Crandall [Johns Hopkins Univ。出版社,1981年,众所周知,由非线性但均匀的操作员控制的一阶进化问题承认,平滑效果是,每种相应的轻度解决方案都是Lipschitz在每个正时的连续lipschitz。此外,如果基础的Banach空间具有ranikodým的特性,那么这些温和的解决方案为A.E.可差异,时间来源满足全球和点的界限。 在本文中,我们表明,如果同质运算符被Lipschitz连续映射扰动,这些结果仍然是正确的。更确切地说,我们建立了全球$ l^1 $ Aronson-Bénilan类型估计值,并确定Aronson-Bénilan类型估算。我们将我们的理论运用来得出全局$ l^q $ - $ l^{\ infty} $ - 估计由dirichlet到neumann操作员与$ p $ - laplace-beltrami操作员相关的扰动扩散问题的时间衍生,并在compact riemannianianianianianianianianianian centrical concercrandord carvistords anderolds corparitord carvistords and coptractectiond。

Since the pioneering works by Aronson & Bénilan [C. R. Acad. Sci. Paris Sér., 1979] and Bénilan & Crandall [Johns Hopkins Univ. Press, 1981], it is well-known that first-order evolution problems governed by a nonlinear but homogeneous operator admit the smoothing effect that every corresponding mild solution is Lipschitz continuous at every positive time. Moreover, if the underlying Banach space has the Radon-Nikodým property, then these mild solution is a.e. differentiable, and the time-derivative satisfies global and point-wise bounds. In this paper, we show that these results remain true if the homogeneous operator is perturbed by a Lipschitz continuous mapping. More precisely, we establish global $L^1$ Aronson-Bénilan type estimates and point-wise Aronson-Bénilan type estimates. We apply our theory to derive global $L^q$-$L^{\infty}$-estimates on the time-derivative of the perturbed diffusion problem governed by the Dirichlet-to-Neumann operator associated with the $p$-Laplace-Beltrami operator and lower-order terms on a compact Riemannian manifold with a Lipschitz boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源