论文标题

基于医学的深度课程学习,以改善断裂分类

Medical-based Deep Curriculum Learning for Improved Fracture Classification

论文作者

Jiménez-Sánchez, Amelia, Mateus, Diana, Kirchhoff, Sonja, Kirchhoff, Chlodwig, Biberthaler, Peter, Navab, Nassir, Ballester, Miguel A. González, Piella, Gemma

论文摘要

当前基于深度学习的方法不容易集成到临床方案,也不能充分利用医学知识。在这项工作中,我们提出并比较了依赖课程学习的几种策略,以支持X射线图像中股骨骨折的分类,这是一个充满挑战的问题,这是由现有的内部内部和专家间分歧所反映的。我们的策略源自多位专家的注释中的医疗决策树和不一致之类的知识,这使我们能够为每个培训样本分配一定程度的困难。我们证明,如果我们开始学习“简单”的示例并朝着“硬”发展,即使数据较少,该模型也可以达到更好的性能。该评估是对大约1000张X射线图像的临床数据集进行分类进行的。我们的结果表明,与阶级统一和随机策略相比,提出的基于医学知识的课程在准确性方面的表现高达15%,从而实现了经验丰富的创伤外科医师的表现。

Current deep-learning based methods do not easily integrate to clinical protocols, neither take full advantage of medical knowledge. In this work, we propose and compare several strategies relying on curriculum learning, to support the classification of proximal femur fracture from X-ray images, a challenging problem as reflected by existing intra- and inter-expert disagreement. Our strategies are derived from knowledge such as medical decision trees and inconsistencies in the annotations of multiple experts, which allows us to assign a degree of difficulty to each training sample. We demonstrate that if we start learning "easy" examples and move towards "hard", the model can reach a better performance, even with fewer data. The evaluation is performed on the classification of a clinical dataset of about 1000 X-ray images. Our results show that, compared to class-uniform and random strategies, the proposed medical knowledge-based curriculum, performs up to 15% better in terms of accuracy, achieving the performance of experienced trauma surgeons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源