论文标题
Timoshenko梁的无锁DPG方案
A locking-free DPG scheme for Timoshenko beams
论文作者
论文摘要
我们为Timoshenko光束弯曲模型具有各种边界条件,结合了夹紧,支撑和自由端的不连续的Petrov-Galerkin方案,具有最佳测试功能(DPG方法)(DPG方法)。我们的方案近似于横向偏转和弯矩。它以$ l_2 $的优势收敛,并且免费锁定。特别是,在Euler-Bernoulli模型的限制情况下,它的行为很好(逆转录)。几个数值结果说明了我们方法的性能。
We develop a discontinuous Petrov-Galerkin scheme with optimal test functions (DPG method) for the Timoshenko beam bending model with various boundary conditions, combining clamped, supported, and free ends. Our scheme approximates the transverse deflection and bending moment. It converges quasi-optimally in $L_2$ and is locking free. In particular, it behaves well (converges quasi-optimally) in the limit case of the Euler-Bernoulli model. Several numerical results illustrate the performance of our method.