论文标题
有关$ω$ - 正交性和$ω$ - 平行性的更多信息
More on $ω$-orthogonality and $ω$-parallelism
论文作者
论文摘要
我们研究了Hilbert Space $ \ Mathscr {h} $上有限的线性操作员的各种数值半径正交性和数字半径并行的某些方面。在几个结果中,我们表明,如果$ t,s \ in \ mathbb {b}(\ mathscr {h})$和$ m^*_ {ω(t)} = m^*_ {ω(s s)} $,那么美元$ \ perp_ {ωb} $是数值半径birkhoff正交性。
We investigate some aspects of various numerical radius orthogonalities and numerical radius parallelism for bounded linear operators on a Hilbert space $\mathscr{H}$. Among several results, we show that if $T,S\in \mathbb{B}(\mathscr{H})$ and $M^*_{ω(T)}=M^*_{ω(S)}$, then $T\perp_{ωB} S$ if and only if $S\perp_{ωB} T$, where $M^*_{ω(T)}=\{\{x_n\}:\,\,\,\|x_n\|=1, \lim_n|\langle Tx_n, x_n\rangle|=ω(T)\}$, and $ω(T)$ is the numerical radius of $T$ and $\perp_{ωB}$ is the numerical radius Birkhoff orthogonality.