论文标题

有关$ω$ - 正交性和$ω$ - 平行性的更多信息

More on $ω$-orthogonality and $ω$-parallelism

论文作者

Torabian, Maryam, Amyari, Maryam, Khibary, Marzieh Moradian

论文摘要

我们研究了Hilbert Space $ \ Mathscr {h} $上有限的线性操作员的各种数值半径正交性和数字半径并行的某些方面。在几个结果中,我们表明,如果$ t,s \ in \ mathbb {b}(\ mathscr {h})$和$ m^*_ {ω(t)} = m^*_ {ω(s s)} $,那么美元$ \ perp_ {ωb} $是数值半径birkhoff正交性。

We investigate some aspects of various numerical radius orthogonalities and numerical radius parallelism for bounded linear operators on a Hilbert space $\mathscr{H}$. Among several results, we show that if $T,S\in \mathbb{B}(\mathscr{H})$ and $M^*_{ω(T)}=M^*_{ω(S)}$, then $T\perp_{ωB} S$ if and only if $S\perp_{ωB} T$, where $M^*_{ω(T)}=\{\{x_n\}:\,\,\,\|x_n\|=1, \lim_n|\langle Tx_n, x_n\rangle|=ω(T)\}$, and $ω(T)$ is the numerical radius of $T$ and $\perp_{ωB}$ is the numerical radius Birkhoff orthogonality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源