论文标题
两次射击的BRDF和形状估计
Two-shot Spatially-varying BRDF and Shape Estimation
论文作者
论文摘要
从图像中捕获对象的对象的形状和空间变化的外观(SVBRDF)是一项具有挑战性的任务,在计算机视觉和图形中都有应用。传统的基于优化的方法通常需要在受控环境中从多个视图中拍摄的大量图像。较新的基于深度学习的方法仅需要一些输入图像,但是重建质量与优化技术不相同。我们提出了一种新颖的深度学习体系结构,并通过阶段的形状和SVBRDF进行估计。先前的预测指导每个估计,然后一个联合改进网络随后完善了SVBRDF和形状。我们遵循实用的移动映像捕获设置,并使用未对齐的两次闪光灯和无闪存图像作为输入。我们的两次映像捕获和网络推断都可以在移动硬件上运行。我们还创建了一个具有域随机几何形状和逼真材料的大规模合成训练数据集。关于合成和现实世界数据集的广泛实验表明,我们在合成数据集上训练的网络可以很好地推广到现实世界图像。与最新方法的比较证明了所提出的方法的出色表现。
Capturing the shape and spatially-varying appearance (SVBRDF) of an object from images is a challenging task that has applications in both computer vision and graphics. Traditional optimization-based approaches often need a large number of images taken from multiple views in a controlled environment. Newer deep learning-based approaches require only a few input images, but the reconstruction quality is not on par with optimization techniques. We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF. The previous predictions guide each estimation, and a joint refinement network later refines both SVBRDF and shape. We follow a practical mobile image capture setting and use unaligned two-shot flash and no-flash images as input. Both our two-shot image capture and network inference can run on mobile hardware. We also create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials. Extensive experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images. Comparisons with recent approaches demonstrate the superior performance of the proposed approach.