论文标题

使用结构标量的自我磨削系统中复杂性的度量

Measure of Complexity in Self-Gravitating Systems using Structure Scalars

论文作者

Yousaf, Z., Bamba, Kazuharu, Bhatti, M. Z., Hassan, K.

论文摘要

本文的目的是介绍$ f(g,t)$理论中提出的静态自我磨碎的各向异性物质的复杂性定义,其中$ g $是高斯式术语和$ t $是能量动量张量的痕迹。我们评估场方程,Tolman-Oppenheimer-Volkoff方程,质量函数和结构标量。在从riemann张量的正交分裂中获得的计算得出的标量变量中,单个标量函数已被确定为复杂性因子。在探索了相应的Tolmann质量函数之后,可以看出,复杂性因子与$ f(g,t)$项一起极大地影响了其配方及其在球形系统随后的径向阶段中的作用。我们还使用了几个ANSATZ,以讨论紧凑物体结构的运动方程方程解决方案。

The aim of this paper is to present the definition of complexity for static self-gravitating anisotropic matter proposed in $f(G,T)$ theory, where $G$ is the Gauss-Bonnet term and $T$ is the trace of energy momentum tensor. We evaluate field equations, Tolman-Oppenheimer-Volkoff equation, mass functions and structure scalars. Among the calculated modified scalar variables that are obtained from the orthogonal splitting of Riemann tensor, a single scalar function has been identified as the complexity factor. After exploring the corresponding Tolmann mass function, it is seen that the complexity factor along with the $f(G,T)$ terms have greatly influenced its formulation and its role in the subsequent radial phases of the spherical system. We have also used couple of ansatz in order to discuss possible solutions of equations of motion in the study of the structure of compact object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源