论文标题

在线多点触摸归因的可解释的深度学习模型

Interpretable Deep Learning Model for Online Multi-touch Attribution

论文作者

Yang, Dongdong, Dyer, Kevin, Wang, Senzhang

论文摘要

在在线广告中,在导致最终交易之前,用户可能会接触到一系列不同的广告活动,例如自然搜索,转介或有机搜索。估计广告活动对用户旅程的贡献非常有意义且至关重要。营销人员可以观察到每个客户与不同的营销渠道的互动,并相应地修改其投资策略。现有的方法包括传统的最后点击方法和最新的多点触摸归因(MTA)问题的数据驱动方法,缺乏足够的解释方法。在本文中,我们提出了一个名为DeepMTA的新型模型,该模型结合了深度学习模型和可解释在线多触摸归因的添加功能解释模型。 DEEPMTA主要包含两个部分,分别是基于逐步的LSTMS的转换预测模型,以捕获不同的时间间隔,以及与Shaley值相结合的添加特征归因模型。加性功能归因是包含二进制变量的线性函数的解释性。作为MTA的第一个可解释的深度学习模型,DeepMTA考虑了客户旅程中的三个重要功能:事件序列顺序,事件频率和事件的时间段效应。实际数据集上的评估显示了提出的转换预测模型达到91 \%的精度。

In online advertising, users may be exposed to a range of different advertising campaigns, such as natural search or referral or organic search, before leading to a final transaction. Estimating the contribution of advertising campaigns on the user's journey is very meaningful and crucial. A marketer could observe each customer's interaction with different marketing channels and modify their investment strategies accordingly. Existing methods including both traditional last-clicking methods and recent data-driven approaches for the multi-touch attribution (MTA) problem lack enough interpretation on why the methods work. In this paper, we propose a novel model called DeepMTA, which combines deep learning model and additive feature explanation model for interpretable online multi-touch attribution. DeepMTA mainly contains two parts, the phased-LSTMs based conversion prediction model to catch different time intervals, and the additive feature attribution model combined with shaley values. Additive feature attribution is explanatory that contains a linear function of binary variables. As the first interpretable deep learning model for MTA, DeepMTA considers three important features in the customer journey: event sequence order, event frequency and time-decay effect of the event. Evaluation on a real dataset shows the proposed conversion prediction model achieves 91\% accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源