论文标题
高性能的长期跟踪
High-Performance Long-Term Tracking with Meta-Updater
论文作者
论文摘要
长期视觉跟踪引起了人们的关注,因为它比短期跟踪更接近实际应用。大多数排名最高的长期跟踪器都采用了脱机培训的暹罗体系结构,因此,通过在线更新的短期跟踪器的巨大进展中,它们无法受益。但是,由于长期不确定和嘈杂的观察,直接引入基于在线的基于上的跟踪器来解决长期问题是很冒险的。在这项工作中,我们提出了一个新颖的脱机元元式上升器来解决一个重要但未解决的问题:跟踪器是否准备在当前框架中进行更新?所提出的元上层器可以以顺序的方式有效地整合几何,歧视性和外观提示,然后使用设计的级联LSTM模块来开采顺序信息。我们的Meta-Updater学习了一个二进制输出来指导跟踪器的更新,并且可以轻松地嵌入到不同的跟踪器中。这项工作还介绍了一个长期跟踪框架,该框架由在线本地跟踪器,在线验证者,基于siamRPN的重新探测器和我们的元式式式框架组成。对DOT2018LT,DOT2019LT,OXUVALT,TLP和LASOT基准的许多实验结果表明,我们的跟踪器的性能比其他竞争算法要好得多。我们的项目可在网站上找到:https://github.com/daikenan/ltmu。
Long-term visual tracking has drawn increasing attention because it is much closer to practical applications than short-term tracking. Most top-ranked long-term trackers adopt the offline-trained Siamese architectures, thus, they cannot benefit from great progress of short-term trackers with online update. However, it is quite risky to straightforwardly introduce online-update-based trackers to solve the long-term problem, due to long-term uncertain and noisy observations. In this work, we propose a novel offline-trained Meta-Updater to address an important but unsolved problem: Is the tracker ready for updating in the current frame? The proposed meta-updater can effectively integrate geometric, discriminative, and appearance cues in a sequential manner, and then mine the sequential information with a designed cascaded LSTM module. Our meta-updater learns a binary output to guide the tracker's update and can be easily embedded into different trackers. This work also introduces a long-term tracking framework consisting of an online local tracker, an online verifier, a SiamRPN-based re-detector, and our meta-updater. Numerous experimental results on the VOT2018LT, VOT2019LT, OxUvALT, TLP, and LaSOT benchmarks show that our tracker performs remarkably better than other competing algorithms. Our project is available on the website: https://github.com/Daikenan/LTMU.