论文标题
使用替代模型和共形推理对自主系统的统计验证
Statistical Verification of Autonomous Systems using Surrogate Models and Conformal Inference
论文作者
论文摘要
在本文中,我们提出了基于共形推理的方法,用于CPS模型的统计验证。网络物理系统(CPS),例如自动驾驶汽车,航空系统和医疗设备在高度不确定的环境中运行。通常使用有限数量的参数或输入信号对这种不确定性进行建模。给定信号时间逻辑(STL)中的系统规范,我们想验证模型参数/输入信号的所有(无限)值,该系统满足其规范。不幸的是,这个问题通常是不确定的。 {\ EM统计模型检查}(SMC)通过通过统计学上的模型仿真推理来确保CPS模型的正确性,从而提供解决方案。我们提出了一种新方法,用于对模型参数上用户提供的分布的CPS模型进行统计验证。我们的技术使用模型仿真来学习{\ em替代模型},并使用{\ em condormal推理}来满足给定STL属性的概率保证。此外,我们可以为任何用户指定的置信度提供包含给定STL属性的定量满意度值的预测间隔。我们还提出了基于高斯工艺(GP)基于基于高斯工艺的替代模型的改进程序,以在参数空间中的子区域获得细粒度的概率保证。反过来,这使得CPS设计人员可以在安全至关重要应用的参数空间中选择保证的有效性域。最后,我们证明了我们的技术在多种CPS模型上的功效。
In this paper, we propose conformal inference based approach for statistical verification of CPS models. Cyber-physical systems (CPS) such as autonomous vehicles, avionic systems, and medical devices operate in highly uncertain environments. This uncertainty is typically modeled using a finite number of parameters or input signals. Given a system specification in Signal Temporal Logic (STL), we would like to verify that for all (infinite) values of the model parameters/input signals, the system satisfies its specification. Unfortunately, this problem is undecidable in general. {\em Statistical model checking} (SMC) offers a solution by providing guarantees on the correctness of CPS models by statistically reasoning on model simulations. We propose a new approach for statistical verification of CPS models for user-provided distribution on the model parameters. Our technique uses model simulations to learn {\em surrogate models}, and uses {\em conformal inference} to provide probabilistic guarantees on the satisfaction of a given STL property. Additionally, we can provide prediction intervals containing the quantitative satisfaction values of the given STL property for any user-specified confidence level. We also propose a refinement procedure based on Gaussian Process (GP)-based surrogate models for obtaining fine-grained probabilistic guarantees over sub-regions in the parameter space. This in turn enables the CPS designer to choose assured validity domains in the parameter space for safety-critical applications. Finally, we demonstrate the efficacy of our technique on several CPS models.