论文标题

成像和自动范围跟踪中的不确定性量化:贝叶斯深点的方法

Uncertainty quantification in imaging and automatic horizon tracking: a Bayesian deep-prior based approach

论文作者

Siahkoohi, Ali, Rizzuti, Gabrio, Herrmann, Felix J.

论文摘要

在反问题中,不确定性定量(UQ)涉及解决方案非唯一性和数据噪声敏感性的概率描述。将地震成像设置为贝叶斯框架,可以通过解决模型后验分布来研究不确定性的原则性方式。然而,成像通常仅构成顺序工作流的第一阶段,当应用于对反转结果高度敏感的后续任务时,UQ变得更加相关。在本文中,我们关注UQ如何滴入地平线跟踪,以确定地层模型,并研究其对成像结果的敏感性。因此,这项工作的主要贡献是通过数据引导的地平线跟踪不确定性分析的方法。这项工作从根本上是基于反射率的特殊重新聚体化,称为“深处”。可行的模型仅限于具有固定输入的卷积神经网络的输出,而权重和偏见是高斯随机变量。给定深层的模型,通过马尔可夫链蒙特卡洛方法从后部分布中取样网络参数,从中,有条件的均值平均值和点标准偏差近似。对于后验分布的每个样本,会产生反射率,并自动跟踪地平线。这样,模型参数的不确定性自然转化为地平线跟踪。作为拟议方法验证的一部分,我们验证了地平线跟踪的估计置信区间与地质复杂区域(例如故障)一致。

In inverse problems, uncertainty quantification (UQ) deals with a probabilistic description of the solution nonuniqueness and data noise sensitivity. Setting seismic imaging into a Bayesian framework allows for a principled way of studying uncertainty by solving for the model posterior distribution. Imaging, however, typically constitutes only the first stage of a sequential workflow, and UQ becomes even more relevant when applied to subsequent tasks that are highly sensitive to the inversion outcome. In this paper, we focus on how UQ trickles down to horizon tracking for the determination of stratigraphic models and investigate its sensitivity with respect to the imaging result. As such, the main contribution of this work consists in a data-guided approach to horizon tracking uncertainty analysis. This work is fundamentally based on a special reparameterization of reflectivity, known as "deep prior". Feasible models are restricted to the output of a convolutional neural network with a fixed input, while weights and biases are Gaussian random variables. Given a deep prior model, the network parameters are sampled from the posterior distribution via a Markov chain Monte Carlo method, from which the conditional mean and point-wise standard deviation of the inferred reflectivities are approximated. For each sample of the posterior distribution, a reflectivity is generated, and the horizons are tracked automatically. In this way, uncertainty on model parameters naturally translates to horizon tracking. As part of the validation for the proposed approach, we verified that the estimated confidence intervals for the horizon tracking coincide with geologically complex regions, such as faults.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源