论文标题

在微波驱动的半导体电荷盘中实施几何量子门

Implementation of geometric quantum gates on microwave-driven semiconductor charge qubits

论文作者

Zhang, Chengxian, Chen, Tao, Wang, Xin, Xue, Zheng-Yuan

论文摘要

基于双重量子点的半导体电荷量子量子可以是实现量子计算的平台。但是,它的噪声严重遭受。在这里,我们提供了一个理论框架,以实现该系统中的通用几何量子门。我们发现,尽管可以通过在其相应的最佳点附近操作来抑制失调的噪声,但另一方面,隧道噪声被放大,并成为单品门的主要误差来源,这一事实以前不足以欣赏。通过数值模拟,我们证明了几何门优于各种隧道噪声水平的动态门,这使得它们特别适合与微波驾驶结合使用。为了获得非平凡的两分门,我们引入了一个由超导谐振器耦合的电荷矩形的混合系统。当每个电荷量子保持与谐振器共振时,可以构造一个纠缠的几何栅极,其保真度高于实验相关噪声水平的动态门的固定性门。因此,我们的结果表明,几何量子门是实现电荷量子的高保真操作的强大工具。

A semiconductor-based charge qubit, confined in double quantum dots, can be a platform to implement quantum computing. However, it suffers severely from charge noises. Here, we provide a theoretical framework to implement universal geometric quantum gates in this system. We find that, while the detuning noise can be suppressed by operating near its corresponding sweet spot, the tunneling noise, on the other hand, is amplified and becomes the dominant source of error for single-qubit gates, a fact previously insufficiently appreciated. We demonstrate, through numerical simulation, that the geometric gates outperform the dynamical gates across a wide range of tunneling noise levels, making them particularly suitable to be implemented in conjunction with microwave driving. To obtain a nontrivial two-qubit gate, we introduce a hybrid system with charge qubits coupled by a superconducting resonator. When each charge qubit is in resonance with the resonator, it is possible to construct an entangling geometric gate with fidelity higher than that of the dynamical gate for experimentally relevant noise levels. Therefore, our results suggest that geometric quantum gates are powerful tools to achieve high-fidelity manipulation for the charge qubit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源