论文标题
抗铁磁铁中的天际源:热稳定性和外部田间和杂质的效果
Skyrmions in antiferromagnets: thermal stability and the effect of external field and impurities
论文作者
论文摘要
提出了抗铁磁铁(AFMS)中的天际的计算,并且与相应的铁磁体(FMS)中的天空相比,它们的性质与它们相比。 Skyrmion塌陷的速率和通过轨道边界逃脱,以及在非磁杂质下与和塌陷的结合,是根据应用磁场的函数计算的。在没有施加的磁场的情况下,在AFMS中,Skyrmion歼灭的活化能是相同的,并且相应的FMS是相同的。但是,Arrhenius速率定律中的指数因子是不同的,因为这两个系统中的Skyrmion动力学是不同的。施加的磁场对两种类型的材料中的天空具有相反的影响。在AFMS中,天际崩溃的速度以及通过磁带边缘的逃逸速率随着场的增加而略有减小,而当磁场在Skyrmion的中心与磁化的磁化对应时,在相应FMS中的Skyrmion的这些速率强烈增加。非磁性杂质不太可能在AFMS中捕获Skyrmion,尤其是在存在磁场的情况下。这与既定的事实一样,即自旋极化电流沿电流方向移动Skyrmions,而在FMS中,Skyrmions与电流的角度移动,表明AFMS中的Skyrmions具有比FMS中的Skyrmions的多种优势性能用于内存和自旋设备。
Calculations of skyrmions in antiferromagnets (AFMs) are presented, and their properties compared with skyrmions in corresponding ferromagnets (FMs). The rates of skyrmion collapse and escape through the boundary of a track, as well as the binding to and collapse at a non-magnetic impurity, are calculated as a function of applied magnetic field. The activation energy for skyrmion annihilation is the same in AFMs and corresponding FMs in the absence of an applied magnetic field. The pre-exponential factor in the Arrhenius rate law is, however, different because skyrmion dynamics is different in the two systems. An applied magnetic field has opposite effects on skyrmions in the two types of materials. In AFMs the rate of collapse of skyrmions as well as the rate of escape through the edge of a magnetic strip decreases slightly with increasing field, while these rates increase strongly for a skyrmion in the corresponding FMs when the field is directed antiparallel to the magnetization in the center of the skyrmion. A non-magnetic impurity is less likely to trap a skyrmion in AFMs especially in the presence of a magnetic field. This, together with the established fact that a spin polarized current moves skyrmions in AFMs in the direction of the current, while in FMs skyrmions move at an angle to the current, demonstrates that skyrmions in AFMs have several advantageous properties over skyrmions in FMs for memory and spintronic devices.