论文标题

精制分区功能的全息双重双重

Holographic duals of refined partition functions

论文作者

Toldo, Chiara

论文摘要

近年来,通过定位,SCFT的超对称分区函数的计算取得了很多进展。 $ s^1 \ timesσ_g$上的产品歧管上的扭曲分区功能,其中$σ_g$是二维Riemann表面,由于其在微晶和磁性静态AD中的作用在磁性静态ADS $ _4 $ _4 $黑色孔中实现了拓扑扭曲。我们在这里审查具有保形边界更通用的3D流形的超级实力解决方案。我们首先将重点放在解决方案(ADS-TAUB-NUT和ADS-TAUB-BOLT)上,其边界是$σ_G$的圆圈束,显示了他们的shell动作的匹配以及双CFT的分区函数的较大$ n $限制。然后,我们讨论了一个充满挑战的例子的最新结果,其中涉及角动量的完善。在这种情况下,重力背景是旋转超对称广告$ _4 $黑洞。我们回顾了两种不同类别的解决方案的显着特征,并在Mheory中提升了超级实力的理论,并评论了双CFT中其熵计数的当前状态。

Recent years have witnessed lots of progress in the computation of supersymmetric partition functions of SCFTs on curved manifolds via localization. The twisted partition function on product manifolds of the form $S^1 \times Σ_g$, where $Σ_g$ is a two-dimensional Riemann surface, is of particular relevance due to its role in the microstate counting for magnetic static AdS$_4$ black holes realizing the topological twist. We review here supergravity solutions having as conformal boundary more general 3d manifolds. We first focus on solutions (AdS-Taub-NUT and AdS-Taub-Bolt) having as boundary a circle bundle over $Σ_g$, showing the matching of their on-shell action with the large $N$ limit of the partition function of the dual CFT. We then discuss some recent results for a challenging example, which involves the refinement by angular momentum. The gravitational backgrounds in this case are rotating supersymmetric AdS$_4$ black holes. We review the salient features of two different classes of such solutions in theories of supergravity with uplift in M-theory, and comment on the current status of their entropy counting in the dual CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源