论文标题

纠缠在三分之一系统中的矢量特性

Vector Properties of Entanglement in a Three-Qubit System

论文作者

Uskov, Dmitry B., Alsing, Paul M.

论文摘要

我们建议在$ su(4)$和$(6)$ lie代数之间基于同构的三个量子系统中的纠缠模型动态矢量模型。概括了三分之二本地不变的plücker-type描述,我们介绍了三对实值$ 3D $ vector(在此表示为$ a_ {r,i} $,$ b_ {r,i} $和$ c_ {r,i} $)。这些向量的幅度决定了系统的两量和三分之三的纠缠参数。我们表明,在本地$ su(2)$操作下,向量的演变$ a $ a $ a $ a $ a $,$ b $,$ c $与$相同(3)$相应地的Qubits $ a $ a $,$ b $和$ c $的单位bloch载体的演变。同时,将一般的两分(4)$ hamiltonians纳入$ a-b $,$ a-c $和$ b-c $ $ $ $ $两分之二的耦合项产生$ so(6)$ so(6)$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $和$ c $和$ b $和$ b $和$ b $和$ c $。事实证明,由不同的两量耦合项引起的纠缠动态完全取决于矢量$ a $ a $,$ b $,$ c $的相互取向,可以通过单量转换来控制。我们通过解决涉及$ W $,Greenberg-Horne-Zeilinger($ GHz $)和Biseparable State之间的转换的量子控制问题来说明纠缠媒介描述的力量。

We suggest a dynamical vector model of entanglement in a three qubit system based on isomorphism between $su(4)$ and $so(6)$ Lie algebras. Generalizing Plücker-type description of three-qubit local invariants we introduce three pairs of real-valued $3D$ vector (denoted here as $A_{R,I}$ , $B_{R,I}$ and $C_{R,I}$). Magnitudes of these vectors determine two- and three-qubit entanglement parameters of the system. We show that evolution of vectors $A$, $B$ , $C$ under local $SU(2)$ operations is identical to $SO(3)$ evolution of single-qubit Bloch vectors of qubits $a$, $b$ and $c$ correspondingly. At the same time, general two-qubit $su(4)$ Hamiltonians incorporating $a-b$, $a-c$ and $b-c$ two-qubit coupling terms generate $SO(6)$ coupling between vectors $A$ and $B$, $A$ and $C$, and $B$ and $C$, correspondingly. It turns out that dynamics of entanglement induced by different two-qubit coupling terms is entirely determined by mutual orientation of vectors $A$, $B$, $C$ which can be controlled by single-qubit transformations. We illustrate the power of this vector description of entanglement by solving quantum control problems involving transformations between $W$, Greenberg-Horne-Zeilinger ($GHZ$ ) and biseparable states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源