论文标题
非霍尔丹霍尔丹蜂窝晶格中的拓扑保护
Topological Protection in non-Hermitian Haldane Honeycomb Lattices
论文作者
论文摘要
非热门系统中的拓扑现象最近已成为对光子学和凝结物社区的极大兴趣的主题。特别是,在非宿舍晶格中观察拓扑保护的边缘状态的可能性引发了对这种状态维持的系统的密集搜索。在这里,我们介绍了关于二维Haldane晶格中拓扑边缘状态的出现的第一项研究,该态晶格表现出平衡的增益和损失。根据对其他Chern绝缘子模型的最新研究,我们表明可以在所谓的$ \ Mathcal {p} \ Mathcal {t} $ - 对称阶段中观察到边缘状态,也就是说,当增益损失平衡系统的哈密顿量的频谱不是完全真实的。更重要的是,我们发现这种受拓扑保护的边缘状态出现,无论晶格边界,即锯齿形,胡须或扶手椅。
Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the photonics and condensed-matter communities. In particular, the possibility of observing topologically-protected edge states in non-Hermitian lattices has sparked an intensive search for systems where this kind of states are sustained. Here, we present the first study on the emergence of topological edge states in two-dimensional Haldane lattices exhibiting balanced gain and loss. In line with recent studies on other Chern insulator models, we show that edge states can be observed in the so-called broken $\mathcal{P}\mathcal{T}$-symmetric phase, that is, when the spectrum of the gain-loss-balanced system's Hamiltonian is not entirely real. More importantly, we find that such topologically protected edge states emerge irrespective of the lattice boundaries, namely zigzag, bearded or armchair.