论文标题

通过单眼启用拓扑规划

Enabling Topological Planning with Monocular Vision

论文作者

Stein, Gregory J., Bradley, Christopher, Preston, Victoria, Roy, Nicholas

论文摘要

导航的拓扑策略有意义地减少了机器人可用的动作的空间,允许使用启发式先导或学习启用计算高效,智能的计划。在低质地或高度混乱的环境中,估计结构的挑战排除了其用于拓扑规划的使用。我们提出了一个可靠的稀疏图表示,可以用单眼视觉构建并克服这些缺点。使用学习的传感器,我们通过检测稀疏顶点(例如墙壁的边界)和关于它们之间的结构的推理来估算环境的高级结构。我们还估计地图中已知的自由空间,这是通过以前未知环境进行计划的必要功能。我们表明,我们的映射技术可以用于真实数据,并且足以在模拟的多代理搜索和学习的亚目标计划应用程序中进行计划和探索。

Topological strategies for navigation meaningfully reduce the space of possible actions available to a robot, allowing use of heuristic priors or learning to enable computationally efficient, intelligent planning. The challenges in estimating structure with monocular SLAM in low texture or highly cluttered environments have precluded its use for topological planning in the past. We propose a robust sparse map representation that can be built with monocular vision and overcomes these shortcomings. Using a learned sensor, we estimate high-level structure of an environment from streaming images by detecting sparse vertices (e.g., boundaries of walls) and reasoning about the structure between them. We also estimate the known free space in our map, a necessary feature for planning through previously unknown environments. We show that our mapping technique can be used on real data and is sufficient for planning and exploration in simulated multi-agent search and learned subgoal planning applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源