论文标题

DPGN:用于少量学习的分销传播图网络

DPGN: Distribution Propagation Graph Network for Few-shot Learning

论文作者

Yang, Ling, Li, Liangliang, Zhang, Zilun, Zhou, Xinyu, Zhou, Erjin, Liu, Yu

论文摘要

大多数基于图形网络的元学习方法都使用示例的模型实例级别的关系。我们进一步扩展了这个想法,以明确地对一个示例与所有其他示例的分布级别的关系以1-vs-n方式建模。我们提出了一种名为分布传播图网络(DPGN)的新型方法,用于几次学习。它传达了每个几次学习任务中的分布级关系和实例级别的关系。为了结合所有示例的分布级关系和实例级关系,我们构建了一个双重完整的图形网络,该图由点图和分布图组成,每个节点代表一个示例。 DPGN配备了双图体系结构,将标记的示例中的标签信息传播到几代人的未标记示例。在几乎没有实现基准的广泛实验中,DPGN在监督环境下的最先进结果在5%$ \ sim $ 12%和7%$ \ sim $ \ sim $ \ sim $ 13%的情况下优于最先进的结果。代码将发布。

Most graph-network-based meta-learning approaches model instance-level relation of examples. We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised setting and 7% $\sim$ 13% under semi-supervised setting. Code will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源