论文标题

迈向Riemann假设的解决方案

Towards a resolution of the Riemann hypothesis

论文作者

McPhedran, R C

论文摘要

本文包含与Riemann假设的解决方案相关的工作,此后泰勒\ cite {prt},lagarias和suzuki \ cite {lagandsuz}和ki \ cite {ki},以及pustyl'nikov \ cite {ki cite {pustyl'nikov \ cite {poust {pust,pust2}和keiper和keiper。函数$ξ_+(s)$和$ξ_-(s)$,已知所有零都在关键线上。 Riemann假设本身与$ξ_+(s)$和$ξ_-(s)$的位置的位置的问题有关。开发了一种论点,即表面上建立了Riemann假设的有效性。它增加了脓疱尼科夫的必要条件。讨论了第二个论点,Riemann可以访问。

This article contains work associated with a resolution of the Riemann hypothesis, following work by Taylor \cite{prt}, Lagarias and Suzuki \cite{lagandsuz} and Ki \cite{ki}, as well as Pustyl'nikov \cite{pust, pust2} and Keiper \cite{keiper}. Functions $ξ_+(s)$ and $ξ_-(s)$ are considered, for which it is known that all zeros lie on the critical line. The Riemann hypothesis itself pertains to the question of the location of the zeros of the sum and difference of $ξ_+(s)$ and $ξ_-(s)$, and this is investigated. An argument is developed which prima facie establishes the validity of the Riemann hypothesis. It adds to a necessary condition of Pustyl'nikov a sufficient condition. A second argument is discussed, which could have been accessible to Riemann.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源