论文标题

使用基于几何关系的增强,从OCT图像中的病理视网膜区域分割

Pathological Retinal Region Segmentation From OCT Images Using Geometric Relation Based Augmentation

论文作者

Mahapatra, Dwarikanath, Bozorgtabar, Behzad, Thiran, Jean-Philippe, Shao, Ling

论文摘要

医疗图像分割是计算机辅助诊断的重要任务。大型数据集的PixelWise手动注释需要高专业知识,并且耗时。传统的数据增强因未充分代表训练集的基本分布而有限,从而在从不同来源捕获的图像上进行测试时会影响模型的鲁棒性。先前的工作利用综合图像进行数据增强,忽略了不同解剖标签之间的几何关系。我们通过共同编码几何和形状的固有关系来提出比以前基于GAN的医学图像合成方法的改进。潜在空间变量采样导致从基本图像中产生的不同产生图像,并提高了鲁棒性。鉴于我们方法生成的那些增强图像,我们训练分割网络以增强视网膜光学相干断层扫描(OCT)图像的分割性能。所提出的方法优于公共修饰数据集上的最先进的细分方法,该方法具有从不同的采集过程中捕获的图像。消融研究和视觉分析还表明了整合几何和多样性的好处。

Medical image segmentation is an important task for computer aided diagnosis. Pixelwise manual annotations of large datasets require high expertise and is time consuming. Conventional data augmentations have limited benefit by not fully representing the underlying distribution of the training set, thus affecting model robustness when tested on images captured from different sources. Prior work leverages synthetic images for data augmentation ignoring the interleaved geometric relationship between different anatomical labels. We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape. Latent space variable sampling results in diverse generated images from a base image and improves robustness. Given those augmented images generated by our method, we train the segmentation network to enhance the segmentation performance of retinal optical coherence tomography (OCT) images. The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures. Ablation studies and visual analysis also demonstrate benefits of integrating geometry and diversity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源