论文标题

使用交互点学习人类对象的相互作用检测

Learning Human-Object Interaction Detection using Interaction Points

论文作者

Wang, Tiancai, Yang, Tong, Danelljan, Martin, Khan, Fahad Shahbaz, Zhang, Xiangyu, Sun, Jian

论文摘要

了解人与物体之间的相互作用是视觉分类中的基本问题之一,也是迈向详细场景理解的重要一步。人类对象相互作用(HOI)检测旨在将人与物体以及对它们之间的复杂相互作用的识别进行定位。大多数现有的HOI检测方法都是以实例为中心的,其中所有可能的人对象对之间的相互作用都是根据外观特征和粗空间信息来预测的。我们认为,仅外观特征不足以捕获复杂的人类对象相互作用。因此,在本文中,我们提出了一种新型的全趋验证方法,该方法直接检测人类对象对之间的相互作用。我们的网络预测交互点,该交互点直接定位和分类了互动。与密集的预测相互作用向量配对,相互作用与人类和对象检测相关联,以获得最终预测。据我们所知,我们是第一个提出一种将HOI检测作为关键点检测和分组问题提出的方法。实验是在两个流行的基准上进行的:V-Coco和Hico-Det。我们的方法在两个数据集上设定了新的最新技术。代码可在https://github.com/vaesl/ip-net上找到。

Understanding interactions between humans and objects is one of the fundamental problems in visual classification and an essential step towards detailed scene understanding. Human-object interaction (HOI) detection strives to localize both the human and an object as well as the identification of complex interactions between them. Most existing HOI detection approaches are instance-centric where interactions between all possible human-object pairs are predicted based on appearance features and coarse spatial information. We argue that appearance features alone are insufficient to capture complex human-object interactions. In this paper, we therefore propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs. Our network predicts interaction points, which directly localize and classify the inter-action. Paired with the densely predicted interaction vectors, the interactions are associated with human and object detections to obtain final predictions. To the best of our knowledge, we are the first to propose an approach where HOI detection is posed as a keypoint detection and grouping problem. Experiments are performed on two popular benchmarks: V-COCO and HICO-DET. Our approach sets a new state-of-the-art on both datasets. Code is available at https://github.com/vaesl/IP-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源