论文标题

$ 1 $ - 产品在非亚伯群体中的一致条件

$1$-product problems with congruence conditions in nonabelian groups

论文作者

Zhao, Kevin

论文摘要

令$ g $为有限的组,$ d_ {2n} $是$ 2N $元素的二面体组。对于积极的整数$ d $,令$ \ mathsf {s} _ {d \ mathbb {n}}}(g)$表示最小的整数$ \ ell \ in \ in \ mathbb {n} _0 _0 \ cup \ cup \ cup \ cup \ {+f {+f {+\ iffty \} $ $ | t | \ equiv 0 $(mod $ d $)的非发行$ 1 $ - 产品$ t $ t $。在本文中,我们主要研究二面体组$ d_ {2n} $的问题,并确定其确切值:$ \ m athsf {s} _ {d \ mathbb {n}}}(d_ {2n})= 2d+\ lfloor log_2n \ rfloor $,如果$ \ mathsf {s} _ {d \ mathbb {n}}(d_ {2n})= nd+1 $,如果$ gcd(n,d)= 1 $。此外,我们还分析了MetacyClic组的问题$ C_P \ ltimes_s c_q $并获得结果:$ \ Mathsf {s} _ {kp \ Mathbb {n}}(c_p \ ltimes_s c_q)= lcm(kp,q) $ P | Q-1 $。

Let $G$ be a finite group and $D_{2n}$ be the dihedral group of $2n$ elements. For a positive integer $d$, let $\mathsf{s}_{d\mathbb{N}}(G)$ denote the smallest integer $\ell\in \mathbb{N}_0\cup \{+\infty\}$ such that every sequence $S$ over $G$ of length $|S|\geq \ell$ has a nonempty $1$-product subsequence $T$ with $|T|\equiv 0$ (mod $d$). In this paper, we mainly study the problem for dihedral groups $D_{2n}$ and determine their exact values: $\mathsf{s}_{d\mathbb{N}}(D_{2n})=2d+\lfloor log_2n\rfloor$, if $d$ is odd with $n|d$; $\mathsf{s}_{d\mathbb{N}}(D_{2n})=nd+1$, if $gcd(n,d)=1$. Furthermore, we also analysis the problem for metacyclic groups $C_p\ltimes_s C_q$ and obtain a result: $\mathsf{s}_{kp\mathbb{N}}(C_p\ltimes_s C_q)=lcm(kp,q)+p-2+gcd(kp,q)$, where $p\geq 3$ and $p|q-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源