论文标题

具有深框电势的数据符号选择

Dataless Model Selection with the Deep Frame Potential

论文作者

Murdock, Calvin, Lucey, Simon

论文摘要

选择深层神经网络体系结构是需要平衡性能和参数效率的应用中的一个基本问题。标准方法依赖于特定数据集上的临时工程或计算昂贵的验证。相反,我们试图通过其内在能力来量化其独特和可靠表示的能力,从而实现有效的体系结构比较而无需任何数据。在深度学习与稀疏近似之间的理论联系的基础上,我们提出了深层框架电位:与表示稳定性近似相关的连贯性的度量,但最小化仅取决于网络结构。这提供了一个框架,可以共同量化建筑高参数(例如深度,宽度和跳过连接)的贡献。我们验证其用作模型选择的标准,并在各种常见的残差和密集连接的网络体系结构上证明了与概括误差的相关性。

Choosing a deep neural network architecture is a fundamental problem in applications that require balancing performance and parameter efficiency. Standard approaches rely on ad-hoc engineering or computationally expensive validation on a specific dataset. We instead attempt to quantify networks by their intrinsic capacity for unique and robust representations, enabling efficient architecture comparisons without requiring any data. Building upon theoretical connections between deep learning and sparse approximation, we propose the deep frame potential: a measure of coherence that is approximately related to representation stability but has minimizers that depend only on network structure. This provides a framework for jointly quantifying the contributions of architectural hyper-parameters such as depth, width, and skip connections. We validate its use as a criterion for model selection and demonstrate correlation with generalization error on a variety of common residual and densely connected network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源