论文标题

蛋白质$α$ helices中自由能的量子传输和利用

Quantum transport and utilization of free energy in protein $α$-helices

论文作者

Georgiev, Danko D., Glazebrook, James F.

论文摘要

维持生命的基本生物学过程是由蛋白质纳米引擎催化的,蛋白质纳米发动机维持远距离平衡有序状态的生活系统。为了研究蛋白质中的能量过程,我们分析了总体化的Davydov方程系统,该系统控制了多个酰胺I I激子量子的量子动力学,沿着$α$ helices中的氢键键入肽基团传播。计算模拟已经证实了通过酰胺I能量的抗蛋白质$α$螺旋的变化长度的酰胺I能量的移动davydov soliton的产生。这些孤子的稳定性和迁移率取决于酰胺I振荡器之间的偶极 - 偶极子偶联的均匀性,以及激子 - Phonon相互作用的各向同性。 Davydov Soliton还能够通过大规模的屏障量子隧道,或在碰撞部位进行量子干扰。这里提出的结果支持量子效应在生物系统中的非平凡作用,该作用超出了共价键作为大分子结构的结合剂的机械支持。 Davydov孤子子的量子隧穿和干扰提供具有物理机制的催化活性的大分子蛋白质复合物,可提供高效的运输,传递和自由能的运输,除了支持生物学的进化授权外,还支持这种真实的量子现象的存在,并且确实可以使量子界限的量子界限。

The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in $α$-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein $α$-helices of varying length. The stability and mobility of these solitons depended on the uniformity of dipole-dipole coupling between amide I oscillators, and the isotropy of the exciton-phonon interaction. Davydov solitons were also able to quantum tunnel through massive barriers, or to quantum interfere at collision sites. The results presented here support a nontrivial role of quantum effects in biological systems that lies beyond the mechanistic support of covalent bonds as binding agents of macromolecular structures. Quantum tunneling and interference of Davydov solitons provide catalytically active macromolecular protein complexes with a physical mechanism allowing highly efficient transport, delivery, and utilization of free energy, besides the evolutionary mandate of biological order that supports the existence of such genuine quantum phenomena, and may indeed demarcate the quantum boundaries of life.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源