论文标题
Chern和手性铰链绝缘子的多体不变剂
Many-Body Invariants for Chern and Chiral Hinge Insulators
论文作者
论文摘要
我们为2D Chern和3D手性铰链绝缘子构造了新的多体不变式,其特征是量化偶极子和四极矩的泵送。我们设计的不变性完全是根据带有一组单一操作员的圆环几何形状上的多体状态波形而写的。我们通过拓扑字段理论解释,绝热泵送论证和直接映射自由屈光度带指数为我们的不变性提供了许多支持证据。我们最终通过数值计算确认了我们的不变性,包括准确的一维系统上的无限密度矩阵重新归一化组。因此,多体不变式明确包围了拓扑阶段的理论描述的几个不同的支柱。
We construct new many-body invariants for 2d Chern and 3d chiral hinge insulators, which are characterized by quantized pumping of dipole and quadrupole moments. The invariants that we devise are written entirely in terms of many-body ground state wavefunctions on a torus geometry with a set of unitary operators. We provide a number of supporting evidences for our invariants via topological field theory interpretation, adiabatic pumping argument, and direct mapping to free-fermion band indices. We finally confirm our invariants by numerical computations including infinite density matrix renormalization group on a quasi-one-dimensional system. The many-body invariants therefore explicitly encircle several different pillars of theoretical descriptions of topological phases.