论文标题

使用知识蒸馏挤压深6DOF对象检测

Squeezed Deep 6DoF Object Detection Using Knowledge Distillation

论文作者

Felix, Heitor, Rodrigues, Walber M., Macêdo, David, Simões, Francisco, Oliveira, Adriano L. I., Teichrieb, Veronica, Zanchettin, Cleber

论文摘要

考虑6DOF姿势的对象的检测是构建虚拟和增强现实应用程序的普遍要求。通常,这是一项复杂的任务,需要实时处理和高精度结果才能获得足够的用户体验。最近,已经提出了不同的深度学习技术来检测RGB图像中6DOF中的对象。但是,他们依靠高复杂性网络,需要使他们无法在移动设备上工作的计算能力。在本文中,我们提出了一种方法来降低6DOF检测网络的复杂性,同时保持准确性。我们使用知识蒸馏来教便携式卷积神经网络(CNN)从实时6DOF检测CNN中学习。所提出的方法允许仅使用RGB图像实时应用程序,同时减少硬件要求。我们使用LineMod数据集评估了所提出的方法,实验结果表明,与原始体系结构相比,所提出的方法将记忆要求减少了几乎99 \%,其成本降​​低了其中一个指标的准确性一半。代码可在https://github.com/heitorcfelix/singleshot6dpose上找到。

The detection of objects considering a 6DoF pose is a common requirement to build virtual and augmented reality applications. It is usually a complex task which requires real-time processing and high precision results for adequate user experience. Recently, different deep learning techniques have been proposed to detect objects in 6DoF in RGB images. However, they rely on high complexity networks, requiring a computational power that prevents them from working on mobile devices. In this paper, we propose an approach to reduce the complexity of 6DoF detection networks while maintaining accuracy. We used Knowledge Distillation to teach portables Convolutional Neural Networks (CNN) to learn from a real-time 6DoF detection CNN. The proposed method allows real-time applications using only RGB images while decreasing the hardware requirements. We used the LINEMOD dataset to evaluate the proposed method, and the experimental results show that the proposed method reduces the memory requirement by almost 99\% in comparison to the original architecture with the cost of reducing half the accuracy in one of the metrics. Code is available at https://github.com/heitorcfelix/singleshot6Dpose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源