论文标题

rpm-net:使用学识渊博的功能匹配稳健点

RPM-Net: Robust Point Matching using Learned Features

论文作者

Yew, Zi Jian, Lee, Gim Hee

论文摘要

迭代最接近的点(ICP)以两个步骤迭代地迭代解决了刚性点云的注册问题:(1)对空间上最接近的点对应关系进行艰苦的分配,然后(2)找到最小二乘的刚性变换。基于空间距离的最接近点对应关系的艰难分配对初始刚性变换和嘈杂/离群点敏感,这通常会导致ICP收敛到错误的局部最小值。在本文中,我们提出了RPM-NET - 对初始化和更强大的深度学习方法的刚性云云注册方法不太敏感。为此,我们的网络使用可区分的凹痕层和退火来从空间坐标和局部几何学中学到的混合特征中获得点对应关系的软分配。为了进一步提高注册性能,我们引入了一个辅助网络,以预测最佳的退火参数。与某些现有方法不同,我们的RPM-NET处理具有部分可见性的缺失对应关系和点云。实验结果表明,与现有的非深度学习和最近的深度学习方法相比,我们的RPM-NET可以实现最先进的表现。我们的源代码可在项目网站https://github.com/yewzijian/rpmnet上获得。

Iterative Closest Point (ICP) solves the rigid point cloud registration problem iteratively in two steps: (1) make hard assignments of spatially closest point correspondences, and then (2) find the least-squares rigid transformation. The hard assignments of closest point correspondences based on spatial distances are sensitive to the initial rigid transformation and noisy/outlier points, which often cause ICP to converge to wrong local minima. In this paper, we propose the RPM-Net -- a less sensitive to initialization and more robust deep learning-based approach for rigid point cloud registration. To this end, our network uses the differentiable Sinkhorn layer and annealing to get soft assignments of point correspondences from hybrid features learned from both spatial coordinates and local geometry. To further improve registration performance, we introduce a secondary network to predict optimal annealing parameters. Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility. Experimental results show that our RPM-Net achieves state-of-the-art performance compared to existing non-deep learning and recent deep learning methods. Our source code is available at the project website https://github.com/yewzijian/RPMNet .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源