论文标题
一种用于非牛顿流体流动流的混合高阶方法
A Hybrid High-Order method for creeping flows of non-Newtonian fluids
论文作者
论文摘要
在本文中,我们设计和分析了一种混合高阶离散方法,用于在小速度的Stokes近似中稳定运动,不可压缩的流体。所提出的方法具有几个吸引人的特征,包括支持一般网格和高阶,无条件的INF-SUP稳定性以及与标量Leray-Lions问题获得的收敛顺序相匹配。该方法的完整适合性和收敛分析是根据应变速率剪切应力定律的新的一般假设进行的,该假设涵盖了几个常见的示例,例如幂律和carreau-yasuda模型。数值示例完成了博览会。
In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for scalar Leray-Lions problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau-Yasuda models. Numerical examples complete the exposition.