论文标题

使用多尺度高斯工艺建模在材料参数空间中搜索较低误差区域的成本效益

Cost-effective search for lower-error region in material parameter space using multifidelity Gaussian process modeling

论文作者

Takeno, Shion, Tsukada, Yuhki, Fukuoka, Hitoshi, Koyama, Toshiyuki, Shiga, Motoki, Karasuyama, Masayuki

论文摘要

有关沉淀形状的信息对于估计材料参数至关重要。因此,我们考虑了估计材料参数空间的区域,在该区域中,计算模型会产生与实验图像中观察到的形状相似的形状的沉淀。该区域称为下误区域(LER),反映了沉淀形状中包含的材料的内在信息。但是,LER估计的计算成本可能很高,因为该模型的准确计算需要多次以更好地探索参数。为了克服这一难度,我们使用了基于高斯过程的多重层建模,其中可以从具有不同精度级别(保真度)的多个计算中进行训练数据。低保真样本的准确性可能较低,但计算成本低于更高前景样本的计算成本。我们提出的采样程序迭代地确定了最具成本效益的点和忠诚度,以提高LER估计的准确性。我们通过估计MGZN2和α-MG相之间的界面能量和晶格不匹配来证明我们方法的效率。结果表明,获得准确的LER估计所需的采样成本可能会大大降低。

Information regarding precipitate shapes is critical for estimating material parameters. Hence, we considered estimating a region of material parameter space in which a computational model produces precipitates having shapes similar to those observed in the experimental images. This region, called the lower-error region (LER), reflects intrinsic information of the material contained in the precipitate shapes. However, the computational cost of LER estimation can be high because the accurate computation of the model is required many times to better explore parameters. To overcome this difficulty, we used a Gaussian-process-based multifidelity modeling, in which training data can be sampled from multiple computations with different accuracy levels (fidelity). Lower-fidelity samples may have lower accuracy, but the computational cost is lower than that for higher-fidelity samples. Our proposed sampling procedure iteratively determines the most cost-effective pair of a point and a fidelity level for enhancing the accuracy of LER estimation. We demonstrated the efficiency of our method through estimation of the interface energy and lattice mismatch between MgZn2 and α-Mg phases in an Mg-based alloy. The results showed that the sampling cost required to obtain accurate LER estimation could be drastically reduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源