论文标题
通过贝叶斯采样
Uncertainty Quantification of First Principles Computational Phase Diagram Predictions of Li-Si System Via Bayesian Sampling
论文作者
论文摘要
在这项工作中,作为案例研究,对Li-Si二元系统进行了对仅密度功能理论(DFT)数据训练的Calphad方法的评估。使用基于贝叶斯误差估计功能(牛肉-VDW)交换相关电位的参数采样方法。通过使用牛肉VDW的内置功能集合,获得了Gibbs自由能拟合参数的不确定性,并可以传播到所得的相图。为了找到Calphad模型的最佳拟合形式,我们使用贝叶斯信息标准(BIC)实现了模型选择步骤。将最佳选择的Calphad模型从DFT计算中应用于其他采样牛肉功能,生成了Calphad模型的合奏,从而导致相图预测的集合。然后将所得的相图编译成单相图,该图表示预测最可能的相位以及对预测的置信度的定量度量指标。 DFT产生的不确定性的治疗方法提供了一种严格的方法,以确保在估计不确定性时考虑DFT的相关误差。从相图中,我们确定了岩性硅的插度电压。结合使用,我们可以更好地了解相变和电压曲线,从而为实验和电池内的Si-Anodes的性能提供了更多分析的预测。
In this work, an assessment of the CALPHAD method trained on only density functional theory (DFT) data is performed for the Li-Si binary system, as a case study. Using a parameter sampling approach based on the Bayesian Error Estimation Functional (BEEF-vdW) exchange-correlation potential. By using built-in ensemble of functionals from BEEF-vdW, the uncertainties of the Gibbs Free Energy fitting parameters are obtained and can be propagated to the resulting phase diagram. To find the best fitting form of the CALPHAD model, we implement a model selection step using the Bayesian information criterion (BIC). Applying the best selected CALPHAD model from the DFT calculation, to other sampled BEEF functionals, an ensemble of CALPHAD models is generated leading to an ensemble of phase diagram predictions. The resulting phase diagrams are then compiled into a single-phase diagram representing the most probable phase predicted as well as a quantitative metric of confidence for the prediction. This treatment of uncertainty resulting from DFT provides a rigorous way to ensure the correlated errors of DFT is accounted for in the estimation of uncertainty. From the phase diagram, we have determined intercalation voltages for lithiated silicon. In combination, we can generate a better understanding of the phase transitions and voltage profile to make a more analysis-informed prediction for experiments and the performance of Si-anodes within batteries.