论文标题

PointGMM:点云的神经GMM网络

PointGMM: a Neural GMM Network for Point Clouds

论文作者

Hertz, Amir, Hanocka, Rana, Giryes, Raja, Cohen-Or, Daniel

论文摘要

点云是3D形状的流行表示。但是,它们编码特定的采样,而无需考虑形状先验或非本地信息。我们主张使用分层高斯混合模型(HGMM),该模型是一种紧凑,自适应和轻巧的表示,概率地定义了基础的3D表面。我们提出了PointGMM,这是一个学会生成形状类特征的HGMM的神经网络,并且还与输入点云一致。 PointGMM经过一系列形状的培训,以学习特定于班级的先验。层次表示有两个主要优点:(i)粗到精细的学习,避免融合到局部贫困的中米; (ii)(无监督的)输入形状一致分区。我们表明,作为一种生成模型,PointGMM学习了一个有意义的潜在空间,该空间可以在现有形状之间产生一致的插值以及合成新型形状。我们还提出了一个使用PointGMM刚性注册的新型框架,该框架学会从输入形状的结构中解开方向。

Point clouds are a popular representation for 3D shapes. However, they encode a particular sampling without accounting for shape priors or non-local information. We advocate for the use of a hierarchical Gaussian mixture model (hGMM), which is a compact, adaptive and lightweight representation that probabilistically defines the underlying 3D surface. We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class, and also coincide with the input point cloud. PointGMM is trained over a collection of shapes to learn a class-specific prior. The hierarchical representation has two main advantages: (i) coarse-to-fine learning, which avoids converging to poor local-minima; and (ii) (an unsupervised) consistent partitioning of the input shape. We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistent interpolations between existing shapes, as well as synthesizing novel shapes. We also present a novel framework for rigid registration using PointGMM, that learns to disentangle orientation from structure of an input shape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源