论文标题

拉格朗日形式主义和自由程度中受约束系统的结构

Structure of Constrained Systems in Lagrangian Formalism and Degree of Freedom Count

论文作者

Heidari, Mohammad Javad, Shirzad, Ahmad

论文摘要

拉格朗日形式主义中提出了一个详细的程序,以研究奇异拉格朗日理论的动态行为。该程序在不同级别上与哈密顿分析平行。特别是,我们介绍了一流的Lagrangian约束的概念。我们显示了一系列一类约束的序列,都会导致新的身份,从而导致仪表转换。我们给出了一个通用公式,用于计算拉格朗日形式主义中的动态变量。作为拉格朗日方法的主要优点,我们表明整个过程也可以协变。给出了几个示例,以使我们的拉格朗日方法清晰。

A detailed program is proposed in the Lagrangian formalism to investigate the dynamical behavior of a theory with singular Lagrangian. This program goes on, at different levels, parallel to the Hamiltonian analysis. In particular, we introduce the notions of first class and second class Lagrangian constraints. We show each sequence of first class constraints leads to a Neother identity and consequently to a gauge transformation. We give a general formula for counting the dynamical variables in Lagrangian formalism. As the main advantage of Lagrangian approach, we show the whole procedure can also be performed covariantly. Several examples are given to make our Lagrangian approach clear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源