论文标题

网络物理系统中基于深度学习的异常检测:进度和机会

Deep Learning-Based Anomaly Detection in Cyber-Physical Systems: Progress and Opportunities

论文作者

Luo, Yuan, Xiao, Ya, Cheng, Long, Peng, Guojun, Yao, Danfeng Daphne

论文摘要

异常检测对于确保网络物理系统(CPS)的安全至关重要。但是,由于CPSS的复杂性日益增加和更复杂的攻击,因此无法直接应用来应对这些挑战的常规异常检测方法,这些检测方法面临着越来越多的数据和需求领域的知识。为此,已经提出了基于深度学习的异常检测(DLAD)方法。在本文中,我们回顾了CPSS中最先进的DLAD方法。我们提出了一种分类法,以了解异常,策略,实施和评估指标的类型,以了解当前方法的基本属性。此外,我们利用这种分类法来识别和突出每个CPS域中的新特征和设计。另外,我们讨论了这些方法的局限性和开放问题。此外,为了让用户了解在实践中选择适当的DLAD方法,我们在实验中探讨了典型神经模型的特征,DLAD方法的工作流程以及DL模型的运行性能。最后,我们讨论了DL方法的缺陷,我们的发现以及改善DLAD方法并激发未来研究的可能方向。

Anomaly detection is crucial to ensure the security of cyber-physical systems (CPS). However, due to the increasing complexity of CPSs and more sophisticated attacks, conventional anomaly detection methods, which face the growing volume of data and need domain-specific knowledge, cannot be directly applied to address these challenges. To this end, deep learning-based anomaly detection (DLAD) methods have been proposed. In this paper, we review state-of-the-art DLAD methods in CPSs. We propose a taxonomy in terms of the type of anomalies, strategies, implementation, and evaluation metrics to understand the essential properties of current methods. Further, we utilize this taxonomy to identify and highlight new characteristics and designs in each CPS domain. Also, we discuss the limitations and open problems of these methods. Moreover, to give users insights into choosing proper DLAD methods in practice, we experimentally explore the characteristics of typical neural models, the workflow of DLAD methods, and the running performance of DL models. Finally, we discuss the deficiencies of DL approaches, our findings, and possible directions to improve DLAD methods and motivate future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源