论文标题

时间网络表示通过历史社区聚合学习

Temporal Network Representation Learning via Historical Neighborhoods Aggregation

论文作者

Huang, Shixun, Bao, Zhifeng, Li, Guoliang, Zhou, Yanghao, Culpepper, J. Shane

论文摘要

网络嵌入是一种学习节点的低维表示的有效方法,可以将其应用于各种现实生活应用,例如可视化,节点分类和链接预测。尽管近年来在这个问题上取得了重大进展,但仍然存在一些重要的挑战,例如如何在不断发展的网络中正确捕获时间信息。实际上,大多数网络正在不断发展。有些网络仅添加新的边缘或节点,例如作者资格网络,而另一些网络则支持删除节点或边缘(例如Internet数据路由)。如果网络结构的变化中存在模式,我们可以更好地理解节点与网络的演变之间的关系,可以进一步利用这些关系以使用更有意义的信息来学习节点表示。在本文中,我们提出了通过历史社区聚集(EHNA)算法的嵌入。更具体地说,我们首先提出了一个时间随机步行,可以在历史街区中识别有影响边缘地层的相关节点。然后,我们应用了一个深度学习模型,该模型使用自定义注意机制诱导节点嵌入,该节点嵌入直接捕获基础特征表示中的时间信息。我们对一系列现实数据集进行了广泛的实验,结果证明了我们新方法在网络重建任务和链接预测任务中的有效性。

Network embedding is an effective method to learn low-dimensional representations of nodes, which can be applied to various real-life applications such as visualization, node classification, and link prediction. Although significant progress has been made on this problem in recent years, several important challenges remain, such as how to properly capture temporal information in evolving networks. In practice, most networks are continually evolving. Some networks only add new edges or nodes such as authorship networks, while others support removal of nodes or edges such as internet data routing. If patterns exist in the changes of the network structure, we can better understand the relationships between nodes and the evolution of the network, which can be further leveraged to learn node representations with more meaningful information. In this paper, we propose the Embedding via Historical Neighborhoods Aggregation (EHNA) algorithm. More specifically, we first propose a temporal random walk that can identify relevant nodes in historical neighborhoods which have impact on edge formations. Then we apply a deep learning model which uses a custom attention mechanism to induce node embeddings that directly capture temporal information in the underlying feature representation. We perform extensive experiments on a range of real-world datasets, and the results demonstrate the effectiveness of our new approach in the network reconstruction task and the link prediction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源