论文标题
通用的非绝热对小空隙超导量子的控制
Universal non-adiabatic control of small-gap superconducting qubits
论文作者
论文摘要
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的惊人对等。虽然在控制自然和人造量子系统方面取得了惊人的成功,但由于非理想性(例如反旋转术语),可能会出现某些局限性(例如,可实现的栅极速度)。在这里,我们探讨了一种基于固定横向耦合的纵向参数的非共振,非绝热驱动的量子控制方法。我们引入了一个由两个电容耦合的Transmon Qubit形成的超导复合量子QUBIT(CQB),该量子位具有一个小于两个能级之间的小型避免的交叉点 - 小于环境温度。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高保真,单Qubit的运营,其Clifford Fidelities超过$ 99.7 \%\%。我们还在两个低频CQB之间执行耦合量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热控制是可行的。
Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an amazing equivalence that emerges in quantum mechanics. While spectacularly successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to non-idealities like the counter-rotating term. Here, we explore a complementary approach to quantum control based on non-resonant, non-adiabatic driving of a longitudinal parameter in the presence of a fixed transverse coupling. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing -- smaller than the environmental temperature -- between two energy levels. We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding $99.7\%$. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.