论文标题

多代理强化学习中的并行知识转移

Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning

论文作者

Liang, Yongyuan, Li, Bangwei

论文摘要

多代理增强学习是建模在现实情况下应用的多代理交互的标准框架。受到人类群体共享的经验的启发,学习知识并行重复在代理之间可以促进团队学习绩效,尤其是在多任务环境中。当所有代理与环境互动并同时学习时,每个独立代理如何从其他代理人的行为知识中选择性地学习是我们需要解决的问题。本文提出了一个新颖的知识转移框架,帕特(PAT)(平行注意转移)。我们在PAT,学生模式和自学习模式下设计了两种表演模式。我们方法中的每个代理都会训练一个分散的学生演员评论,以在每个时间步骤确定其作用模式。当代理商不熟悉环境时,学生模式下的共享注意力机制有效地从其他代理商中选择了学习知识来决定代理的行动。针对先前的建议方法,PAT优于最先进的经验评估结果。我们的方法不仅显着提高了团队的学习率和全球性能,而且可以灵活且可转移,可以应用于各种多代理系统。

Multi-agent reinforcement learning is a standard framework for modeling multi-agent interactions applied in real-world scenarios. Inspired by experience sharing in human groups, learning knowledge parallel reusing between agents can potentially promote team learning performance, especially in multi-task environments. When all agents interact with the environment and learn simultaneously, how each independent agent selectively learns from other agents' behavior knowledge is a problem that we need to solve. This paper proposes a novel knowledge transfer framework in MARL, PAT (Parallel Attentional Transfer). We design two acting modes in PAT, student mode and self-learning mode. Each agent in our approach trains a decentralized student actor-critic to determine its acting mode at each time step. When agents are unfamiliar with the environment, the shared attention mechanism in student mode effectively selects learning knowledge from other agents to decide agents' actions. PAT outperforms state-of-the-art empirical evaluation results against the prior advising approaches. Our approach not only significantly improves team learning rate and global performance, but also is flexible and transferable to be applied in various multi-agent systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源