论文标题
$ l^{1} $中的数据椭圆形方程在紧凑的Riemannian歧管上
Quasi-linear elliptic equations with data in $L^{1}$ on a compact Riemannian manifold
论文作者
论文摘要
这项工作致力于研究$ l^1 $数据的准线性椭圆问题,简单的模型将是$(m,g)$的下一个等式,即紧凑的Riemannian歧管。 $$ - δ_{p} u = f $$ 其中$ f \在l^{1}(m)$中。我们的目标是开发功能框架和工具,这些功能框架和工具是证明存在解决方案的存在和独特性。请注意,我们的论点可用于处理更通用的准线性方程。
This work is dedicated to the study of quasi-linear elliptic problems with $L^1$ data, the simple model will be the next equation on $ (M,g) $ a compact Riemannian manifold. $$-Δ_{p} u=f$$ Where $f\in L^{1}(M) $ .Our goal is to develop the functional framework and tools that are necessary to prove the existence and the uniqueness of the solution for the previous problem. Notice that our argument can be used to deal with a more general class of quasi-linear equations.